

Pat Spoden
Science & Operations Officer
National Weather Service
Paducah, KY
Fall 2012

Schedule

Training for YOU

- Training for Non-NWS Meteorologists and Non-Meteorologists
- http://www.wdtb.noaa.gov/courses/dualpol/ Outreach/index.html

Basics

Current WSR-88D

Dual Pol Radars

What Can You Expect

- New products + the old products
- Improved rainfall estimates
- Ability to locate different types of precipitation
- More confidence when tornadoes are on the ground

Basics

- CC Correlation Coefficient How similar are surrounding raindrops/particles to each other?
 - High CC = high similarity
- ZDR Differential Reflectivity Is the raindrop/hail/particle round?
 - Things that tumble appear to be round
- KDP What is the size and concentration of rain/particles?
 - Larger drops and higher concentration = larger KDP

Dual-Pol Base — Hail Detection

- Very high Z (> 55 dBZ)
- Variable ZDR:
 - Usually low (-0.5 +1.5dB)
 - Positive when mixed with rain!

- Low CC (0.70-0.95)
- If melting hail, high KDP (>1.5 deg/km)

March 2, 2012 Damaging Hail Near Columbia in Adair County

Tornadic Debris Aloft from Vance AFB, OK – 5/24/11

Dual Pol - Updraft Detection

"ZDR columns" –
Regions of liquid
water (strongly
positive ZDR) found
above the
environmental 0°C
height

Updraft Detection

ZDR Column from KVNX on 05/24/11

In this slice, not only can you see an updraft column but also the debris ball aloft.

KDVN 0.5° Z / SRM 0127Z

KDVN 0.5° Z / SRM 0157Z

KDVN 0.5° Z / SRM / ZDR / CC 0157Z

Tornado Debris Signature – CC minima in blues (left) and ZDR minima in grays (right)

Branson, MO

Snow over Long Island

Radar Setup – 1/21/12 KOKX @ 1528 UTC

Snow has a low ZDR ... < 1

Radar Setup - 1/21/12 KOKX @ 1528 U

Snow has a very high CC > 0.97

Radar Setup – 1/21/12 KOKX @ 1528 UTC

20Z 10-26. Very light graupel @ IND Note noisy ZDR and CC

REF

KDP

Advantages of HCA Scheme for QPE Estimation

Below is a storm total rainfall estimate compared with Oklahoma Mesonet gauges. The KDP algorithm has is almost dead-on accurate compared with the legacy $Z = 300 \, (R)^{1.4}$ relationship.

Dual-Pol Derived Products

Hydrometeor Classification (HC)

Melting Layer (ML)

Quantitative Precipitation Estimation (QPE)

- Algorithm caveats apply!!!
- Emphasis on base data interpretation

Hydrometeor Classification

- Determines the "most likely" type
- 10 possible types biological, ground clutter, ice, rain, hail, etc.
- Provides a quick look for areas of concern
- Used as a "safety net" do not use alone!
- Overlap between meteorological particles
- Fuzzy Logic may need tweaking in the future
- Uncertainty information not available one answer only – best guess!
- Be careful of HC in areas of range folding

Melting Layer (ML)

Quantitative Precipitation Estimate (QPE)

Review

Correlation Coefficient (CC):

- The product that helps distinguish precipitation from non precipitation.
- This product helps determine if precipitation targets have the same shape and type (e.g., pure snow or rain) or if more of a mixture exists (e.g., rain and snow).

Differential Reflectivity (ZDR):

The product that helps identify the dominant target shape.
 Spherical, randomly oriented targets (e.g., hail, debris, and snow) have values near 0 while horizontally elongated targets (e.g., medium to large rain drops) have larger positive values.

Specific Differential Phase (KDP):

 Product that identifies regions of heavy rain. The higher the values are, the more intense the rain will be even if hail is present.

Thanks to:

- Matt Friedlein LOT
- Jami Boettcher WDTB
- Andy Wood WDTB
- Clark Payne WDTB
- Andy Kleinsasser ICT
- Ken Cook ICT
- Mick McGuire ICT
- Steve Nelson FFC
- Stephanie Dunten BOX
- John Denman LMK
- John Kwiatkowski IND
- Ray Wolf DVN